Abstract

Ground CS-891 (N-[1-(4-methoxyphenyl)-1-methylethyl]-3-oxo-4-aza-5a-androst-1-ene--carboxamide) of poorly water soluble drug was obtained using a Heiko Seisakusho model TI-100 vibration mill, and samples with different crystallinity were prepared at mixture ratios of 10:0, 7:3, 5:5, 3:7 and 0:10 (intact;ground CS-891). Physicochemical characterizations were obtained using qualitative and quantitative X-ray diffractometry, different scanning calorimetry (DSC), scanning electron microscopy (SEM), Quantasorb surface area analyzer, and controlled atmosphere microbalance. With increase of amorphous CS-891 in mixture ratios, the intensities of X-ray diffraction peaks of crystalline CS-891 were decreased, whereas surface area, water absorption, and exothermic peaks in DSC were increased. The apparent solubility of ground CS-891 was and the solubility of intact CS-891 was at . The apparent precipitation rates of CS-891 in a supersaturated solution during the solubility test were increased with an increase of amorphous CS-891, and a crystalline form of CS-891 transformed from amorphous CS-891 after the solubility test was found by X-ray diffraction analysis, DSC and SEM. The dissolution profiles of CS-891 with different crystallinity at by the USP paddle method were investigated, and the apparent dissolution rate constant of ground CS-891 was about 5.9-fold higher than that of intact CS-891. A linear relationships between the crystallinity of CS-891 and the apparent dissolution rate constant (r>0.96) were obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call