Abstract
The use of nonthermal air plasma is rapidly becoming a novel technology as an alternative source of nitrites in the meat industry. As egg white is a versatile and cost-effective ingredient commonly used to improve the texture of meat products, the effect of its addition after plasma treatment (PTEW) on the yield, pH, residual nitrite, nitrosyl hemochrome, TBARS, color, texture parameters, and aroma profile of pork liver pâtés was studied. The nitrite ion content of plasma-activated egg whites was adjusted to the positive controls containing 60 ppm (PC1) and 120 ppm (PC2) sodium nitrite by modifying the duration of their plasma treatment (PTEW1 and PTEW2, respectively). A group without the addition of nitrites was also manufactured (NC). Each treatment (NC, PC1, PC2, PTEW1, PTEW2) was analyzed on days 1, 3, 5, and 7 of storage at 4 °C. The results showed that liver pâtés containing plasma-treated egg whites had a similar nitrite and nitrosyl hemochrome content compared to samples containing the same amount of nitrite ions derived from sodium nitrite (p ≥ 0.05). In addition, 40 ppm nitrite ions, regardless of the source, was sufficient to achieve the desired reddish-pink color of the product over the entire storage period. Both nitrites from sodium nitrite and plasma-treated egg whites also significantly reduced lipid oxidation compared to the NC group (between 10% and 23% reduction on the last day), but had no significant effect on yield, pH, and texture parameters of the products. Based on the principal component analysis (PCA), the aroma profile of pâtés differed significantly between the groups with and without nitrites, with the largest differences observed on the first day (approx. 88%). Importantly, PTEW1 and PTEW2 aroma after production was similar to group PC2. The results of our study suggest that plasma-activated egg whites can be used as a potential source of nitrite in liver pâté production without adversely affecting the technological properties and shelf life of the final product.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.