Abstract

Emulsions prepared with whey proteins, phospholipids and 10% of vegetable oil were used for a model typifying dressings, coffee whitener and balanced diets. For the present study, two whey proteins (partial heat-denatured whey protein concentrate (WPC) and undenatured whey protein isolate (WPI)) in combination with different phospholipids (hydrolysed and unmodified deoiled lecithin) were chosen to investigate the interactions between proteins, phospholipids and salt (sodium chloride) in such emulsion systems. Oil-in-water (o/w) emulsions (10 wt.% sunflower oil) containing various concentrations of commercial whey proteins (1–2%), phospholipids (0.39–0.78%) and salt (0.5–1.5%) were prepared using a laboratory high pressure homogeniser under various preparation conditions. Each emulsion was characterised by droplet size, creaming rate, flow behaviour and protein load. The dynamic surface activity of the whey proteins and lecithins at the oil–water interface was determined using the drop volume method. The properties of emulsions were significantly influenced by the content of whey protein. Higher protein levels improved the emulsion behaviour (smaller oil droplets and increased stability) independent of the protein or lecithin samples used. An increase of the protein content resulted in a lower tendency for oil droplet aggregation of emulsions with WPC to occur and emulsions tending towards a Newtonian flow behaviour. The emulsification temperature was especially important using the partial heat-denatured WPC in combination with the deoiled lecithin. A higher emulsification temperature (60°C) promoted oil droplet aggregation, as well as an increased emulsion consistency. Emulsions with the WPC were significantly influenced by the NaCl content, as well as the protein–salt ratio. Increasing the NaCl content led to an increase of the droplet size, higher oil droplet aggregation, as well as to a higher creaming rate of the emulsions. An increase of the lecithin content from 0.39 to 0.78% in the emulsion system resulted in a small reduction of the single droplet size. This effect was more pronounced when using the hydrolysed lecithins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call