Abstract

Bone substitutes used in oral surgery include allografts, xenografts, and synthetic materials that are frequently used to compensate bone loss or to reinforce repaired bone, but little is currently known about their physicochemical characteristics. The aim of this study was to evaluate a number of physical and chemical properties in a variety of granulated mineral-based biomaterials used in dentistry and to compare them with those of autogenous bone. Autogenous bone and eight commercial biomaterials of human, bovine, and synthetic origins were studied by high-resolution X-ray diffraction, atomic absorption spectrometry, and laser diffraction to determine their chemical composition, calcium release concentration, crystallinity, and granulation size. The highest calcium release concentration was 24. 94 mg/g for Puros and the lowest one was 2.83 mg/g for Ingenios β-TCP compared to 20.15 mg/g for natural bone. The range of particles sizes, in terms of median size D50, varied between 1.32 μm for BioOss and 902.41 μm for OsteoSponge, compared to 282.1 μm for natural bone. All samples displayed a similar hexagonal shape as bone, except Ingenios β-TCP, Macrobone, and OsteoSponge, which showed rhomboid and triclinic shapes, respectively. Commercial bone substitutes significantly differ in terms of calcium concentration, particle size, and crystallinity, which may affect their in vivo performance.

Highlights

  • Bone is a living tissue that serves for structural support and calcium metabolism

  • Autogenous bone is osteogenic, osteoinductive, osteoconductive, and highly biocompatible [3, 4]

  • This study evaluated the physicochemical characteristics of the eight commercially available bone substitutes of human, bovine, and synthetic origins

Read more

Summary

Introduction

Bone is a living tissue that serves for structural support and calcium metabolism. Bone matrix is organic and consists of a network of collagen protein fibers impregnated with mineral salts (85% of calcium phosphate, 10% of calcium carbonate, and 5% of calcium fluoride and magnesium fluoride). Autogenous bone is osteogenic (cells within a donor graft synthesize new bone at implantation sites), osteoinductive (new bone is formed by active recruitment of host mesenchymal stem cells from surrounding tissue, which differentiate into bone-forming osteoblasts), osteoconductive (vascularization and new bone formation into the transplant), and highly biocompatible [3, 4]. These characteristics should be present in an ideal substitute and all bone grafting materials can be classified according to these characteristics [5]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call