Abstract

AbstractIn this study, selenium nanoparticles (SeNPs) were synthesized and stabilized by reducing sodium selenite using ascorbic acid in an aqueous solution of sodium carboxymethylcellulose (Na‐CMC) with a degree of substitution of 0.97 and a degree of polymerization of 810. IR‐Fourier spectroscopy revealed that coordination bonds between functional groups in Na‐CMC and SeNPs resulted in the development of polymer‐metal complexes. UV–Vis spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), and dynamic light scattering (DLS) methods were used to determine the SeNP sizes in the structure of the nanocomposite film. Investigation of the stabilization and nonstabilization of SeNPs over several cycles has shown that the effect of the polymer matrix of Na‐CMC on the stabilization of nanoparticles was achieved for 672 h, which was confirmed by the unchanged size distribution and resistance to change of the SeNPs synthesized in Na‐CMC solutions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call