Abstract

Hydrothermal treatments, annealing (ANN) and heat moisture treatment (HMT) were applied to four whole pulse flours (black bean, broad bean, chickpea and lentil) with the aim to increase their slow digestible (SDS) and resistant starch (RS) fractions. In order to assess differences in their molecular interactions, they were analyzed and compared by ATR-FTIR before and after in vitro digestion. Both hydrothermal treatments promoted changes on starch granular architecture, being reflected on their thermal and pasting properties, that where positively correlated with their amylose and protein contents (R=0.96, P<0.01). Overall, the proposed hydrothermal treatments increased their SDS and RS fractions, but they had different effect on their in vitro protein digestion. The ATR-FTIR analysis of cooked flours before and after digestion showed that thermal treatments promoted new physical interactions at molecular scale between starch and proteins, that were correlated with the amount of RS fraction. The outcomes of this study could help to understand the slow digestion properties and possible interactions of the flour components in these four pulses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.