Abstract

The physicochemical characteristics and pyrolysis performance of corn stalk (CS) torrefied in water and aqueous ammonia by microwave heating were investigated. Physicochemical characterization revealed that both microwave water torrefied CS (MCS) and microwave ammonia torrefied CS (MACS) showed low hemicellulose content, disrupted macrostructure, improved porous properties, and low ash content. MACS exhibited a significantly lower crystallinity degree of 44.34% than CS (79.55%) and MCS (89.50%). MACS also showed increased methyl/methylene groups intensity, and complete acetyl groups disrupture. Pyrolysis coupled with gas chromatography/mass spectrometry (Py-GC/MS) revealed that compared with CS and MCS, MACS exhibited higher peak areas for ketones, aldehydes, furans and esters, and significantly lower peak areas for acids and phenols. A possible mechanism was proposed for the effects of wet torrefaction with aqueous ammonia on changes in physicochemical structure and pyrolysis behavior of corn stalk.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.