Abstract

SummaryTo further utilise plant protein in oilseeds, it is vital to understand the structural and digestive characteristics of cell wall polysaccharides fractionated from sunflower meal. Water, chelator (cyclohexane‐trans‐1,2‐diaminetetra‐acetate, CDTA), sodium carbonate, 1 mol L−1 KOH, and 4 mol L−1 KOH were used to sequentially extract polysaccharides from sunflower meal, yielding samples that were labelled WSP, CSP, NSP, KS1, and KS4, respectively. Results indicated that galactose (1,6‐β‐D‐Galp) was the major sugar unit in WSP, while arabinose (1,3‐α‐L‐Araf and 1,5‐α‐L‐Araf) was the major sugar in the other four fractions. KS4 showed the highest molecular weight and the lowest thermal stability. The surface of the five polysaccharides was shown to be heterogeneous using SEM and AFM, with KS4 having the highest average size. The molecular weight of the five polysaccharides decreased during simulated digestion in vitro. It was noteworthy that the structures of KS1 and KS4 were harder to destroy than the other three fractions. These two polysaccharides are perhaps what makes sunflower protein difficult to digest, thereby decreasing its nutritional value.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.