Abstract

The present work investigated the physicochemical and structural properties of Tulsi, Alfalfa and two varieties of Manuka honey derived from medicinal plants. Chemical analysis yielded data on the content of reducing sugars (glucose and fructose) that dominate the honey matrix, and of the minor constituents of protein, phenols and flavonoids. Standard chemical assays were used to develop a database of water content, electrical conductivity, pH, ash content, visual appearance and colour intensity. Physicochemical characteristics were related to structural behaviour of the four honey types, as recorded by small-deformation dynamic oscillation in shear, micro- and modulated differential scanning calorimetry, wide angle X-ray diffraction and infrared spectroscopy. The preponderance of hydrogen bonds in intermolecular associations amongst monosaccharides in honey yields a semi-amorphous or semi-crystalline system. That allowed prediction of the calorimetric and mechanical glass transition temperatures that demarcate the passage from liquid-like to solid-like consistency at subzero temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.