Abstract
This study investigated the physico-chemical and textural properties of 3D-printed pea protein-only and pea protein-chicken-based hybrid meat analogs. Both pea protein isolate (PPI)-only and hybrid cooked meat analogs had a similar moisture content of approximately 70%, which was similar to that of chicken mince. However, the protein content increased significantly with the amount of chicken in the hybrid paste undergoing 3D printing and cooking. Significant differences were observed in the hardness values of the non-printed cooked pastes and the 3D printed cooked counterparts, suggesting that the 3D printing process reduces the hardness of the samples and is a suitable method to produce a soft meal, and has significant potential in elderly health care. Scanning electron microscopy (SEM) revealed that adding chicken to the plant protein matrix led to better fiber formation. PPI itself was not able to form any fibers merely by 3D printing and cooking in boiling water. Protein-protein interactions were also studied through the protein solubility test, which indicated that hydrogen bonding was the major bonding that contributed to the structure formation in cooked printed meat analogs. In addition, disulfide bonding was correlated with improved fibrous structures, as observed through SEM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.