Abstract

This study aimed to develop a chemically stable niosomal eye drop containing fosinopril (FOS) for lowering intraocular pressure. The effects of cyclodextrin (CD), surfactant types and membrane stabilizer/charged inducers on physiochemical and chemical properties of niosome were evaluated. The pH value, average particle size, size distribution and zeta potentials were within the acceptable range. All niosomal formulations were shown to be slightly hypertonic with low viscosity. Span® 60/dicetyl phosphate niosomes in the presence and absence of γCD were selected as the optimum formulations according to their high %entrapment efficiency and negative zeta potential values as well as controlled release profile. According to ex vivo permeation study, the obtained lowest flux and apparent permeability coefficient values confirmed that FOS/γCD complex was encapsulated within the inner aqueous core of niosome and could be able to protect FOS from its hydrolytic degradation. The in vitro cytotoxicity revealed that niosome entrapped FOS or FOS/γCD formulations were moderate irritation to the eyes. Furthermore, FOS-loaded niosomal preparations exhibited good physical and chemical stabilities especially of those in the presence of γCD, for at least three months under the storage condition of 2–8 °C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.