Abstract

Hydrogels are three-dimensional polymeric networks very similar to biological tissues and potentially useful as soft tissue substitutes and drug delivery systems. Many synthetic polymers can be used to make hydrogels: poly (vinyl alcohol) is widely employed to make hydrogels for biomedical applications. Improvements in the biocompatibility characteristics of synthetic materials could be achieved by the addition of biological macromolecules. The resulting materials named “bioartificial polymeric materials” could possess the good mechanical properties of the synthetic component and adequate biocompatibility due to the biological component. We have used poly (vinyl alcohol) to make hydrogels containing various amounts of hyaluronic acid. These bioartificial materials were studied to investigate the effect of the presence of the hyaluronic acid on the structural properties of the hydrogels. Thermal, mechanical, morphological and X-ray analyses were performed. A close correspondence between the network consistency and the degree of crystallinity developed in the matrix suggested that the hyaluronic acid, when its content is about 20%, could provide heterogeneous crystallization nuclei for poly (vinyl alcohol) thus increasing the crystallization degree, and consequently, the storage modulus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call