Abstract

The hemp seed contains protein fractions that could serve as useful ingredients for food product development. However, utilization of hemp seed protein fractions in the food industry can only be successful if there is sufficient information on their levels and functional properties. Therefore, this work provides a comparative evaluation of the structural and functional properties of hemp seed protein isolate (HPI) and fractions that contain 2S, 7S, or 11S proteins. HPI and protein fractions were isolated at pH values of least solubility. Results showed that the dominant protein was 11S, with a yield of 72.70 ± 2.30%, while 7S and 2S had values of 1.29 ± 0.11% and 3.92 ± 0.15%, respectively. The 2S contained significantly (p < 0.05) higher contents of sulfhydryl groups at 3.69 µmol/g when compared to 7S (1.51 µmol/g), 11S (1.55 µmol/g), and HPI (1.97 µmol/g). The in vitro protein digestibility of the 2S (72.54 ± 0.52%) was significantly (p < 0.05) lower than those of the other isolated proteins. The intrinsic fluorescence showed that the 11S had a more rigid structure at pH 3.0, which was lost at higher pH values. We conclude that the 2S fraction has superior solubility, foaming capacity, and emulsifying activity when compared to the 7S, 11S, and HPI.

Highlights

  • The global demand for food proteins continues to grow and is expected to generate an estimated $76.48 billion in revenue by 2027 [1]

  • The moisture content was significantly higher in the 2S protein fraction, which could have contributed to the reduced fat level when compared to hemp seed protein isolate (HPI), 11S, and 7S

  • Hemp seed proteins were fractionated into the major globulins (7S and 11S) and albumins (2S) enriched fractions, followed by a comparison with the protein isolate (HPI)

Read more

Summary

Introduction

The global demand for food proteins continues to grow and is expected to generate an estimated $76.48 billion in revenue by 2027 [1]. The reasons for increased demand for food-derived proteins have been associated with their nutritional and techno-functional properties and health benefits [2]. There has been a growing interest in hemp seed proteins due to their high nutritional properties such as high digestibility and contents of sulfurcontaining amino acids and arginine [3,4,5,6]. The available hemp seed proteins in the market are mainly defatted flours and protein concentrates, which are produced from cold-pressed seeds to remove the oil. Hemp seed protein flours and concentrates have been successfully incorporated into a variety of products such as protein shakes, hemp milk, energy bars, and defatted meals, their use as ingredients in food applications is still limited due to poor functional properties [3,4,8]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call