Abstract
Abstract Physicochemical properties of arsenic sulfide sludge (ASS) from copper smelter (ASS-I) and lead−zinc smelter (ASS-II) were examined by XRD, Raman spectroscopy, SEM−EDS, TG−DTA, XPS and chemical phase analysis method. The toxicity characteristic leaching procedure (TCLP), Chinese standard leaching tests (CSLT), three-stage sequential extraction procedure (BCR) and batch leaching experiments (BLE) were used to investigate the environmental stability. The ASSs from different smelters had obviously different physicochemical and environmental properties. The phase composition and micrograph analysis indicate that ASS-I mainly consists of super refined flocculent particles including amorphous arsenic sulfide adhered with amorphous sulfur and that ASS-II mainly consists of amorphous arsenic sulfide. The valence state of arsenic in both sludges is trivalent, but the valence composition of sulfur is quite different. The ASSs have thermal instability properties. The results of TCLP and CSLT indicate that the concentrations of As and Pd in the leaching solution exceed the standard limits. More than 5% and 90% of arsenic are in the form of acid soluble and oxidizable fractions, respectively, which explains the high arsenic leaching toxicity and environmental activity of ASS. This research provides comprehensive information for the disposal of ASS from copper and lead−zinc smelter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transactions of Nonferrous Metals Society of China
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.