Abstract

BackgroundThe quality of drinking water has always been a major health concern, especially in developing countries, where 80 % of the disease cases are attributed to inadequate sanitation and use of polluted water. The inaccessibility of potable water to large segment of a population in the rural communities is the major health concern in most part of developing countries. This study was designed to evaluate the physico-chemical and bacteriological qualities of drinking water of different sources in the study area.MethodsThe study was conducted at Serbo town and selected kebeles around the same town in Kersa district of Jimma Zone, southwest Ethiopia. Socio-demographic characteristics of the study populations were gathered using structured and pre-tested questionnaires. Standard microbiological methods were employed for determination of bacterial load and detection of coliforms. Physico-chemical analyses [including total dissolved substances (TDS), total suspended substances (TSS), biological oxygen demand (BOD), nitrate and phosphate concentrations, turbidity and electrical conductivities] were conducted following guidelines of American Public Health Association and WHO. Correlations among measured parameters of water samples collected from different water sources were computed using SPSS software (version 20).ResultOnly 18.1 % (43/237) of the study population had access to tap water in the study area. More than 50 % of the community relies on open field waste disposal. Members of the family Enterobacteriaceae, Bacillus and Pseudomonas were among dominant bacterial isolates in the water samples. All water samples collected from unprotected water sources were positive for total coliforms and fecal coliforms (FC). Accordingly, FC were detected in 80 % of the total samples with counts ranging between 0.67 and 266.67 CFU/100 ml although 66.67 % of tap water samples were negative for FC. The recorded temperature and pH ranged between 20.1–29.90 °C and 5.64–8.14, respectively. The lowest and highest mean TDS were 116 and 623 mg/l, respectively. Furthermore, the mean concentration of TSS ranged between 2.07 and 403.33 mg/l. Turbidity, electric conductivity, and nitrate concentration of the water samples ranged, respectively, between 0.01–65.4 NTU, 30.6–729 μS/cm, and below detection limit to 95.80 mg/l. In addition, the mean dissolved oxygen values were found to be between 1.62 and 10.71 mg/l; whereas BOD was within the range of 8–77 mg/l. In all water samples, the concentrations of zinc were within the WHO maximum permissible limits (3 mg/l) although the lead concentration in about 66.7 % of the samples exceeded the maximum permissible limit (0.01 mg/l).ConclusionThe present study has revealed that some of the bacteriological data and physico-chemical parameters of the different water sources had values beyond the maximum tolerable limits recommended by WHO. Thus, it calls for appropriate intervention, including awareness development work and improving the existing infrastructure in order to minimize the potential health problems of those communities currently realizing of the available water sources.Electronic supplementary materialThe online version of this article (doi:10.1186/s13104-015-1376-5) contains supplementary material, which is available to authorized users.

Highlights

  • The quality of drinking water has always been a major health concern, especially in developing countries, where 80 % of the disease cases are attributed to inadequate sanitation and use of polluted water

  • The present study has revealed that some of the bacteriological data and physico-chemical parameters of the different water sources had values beyond the maximum tolerable limits recommended by WHO

  • About 43 % of the water sources were found at a distance of less than 20 m from latrine and 32.1 % of them were located in lower elevation with respect to the nearby toilet rooms

Read more

Summary

Introduction

The quality of drinking water has always been a major health concern, especially in developing countries, where 80 % of the disease cases are attributed to inadequate sanitation and use of polluted water. Water-borne diseases are still major health burden in many parts of the world and reported to cause about 4 billion clinical cases of diarrhea per year, representing 5.7 % of the global disease burden in the year 2000 [1]. Around 250 million infections each year, which results in 10–20 million deaths world-wide, occur due to water-borne diseases [4]. The wide spread of a number of diseases such as cholera, dysentery and salmonellosis are mainly due to the lack of safe drinking water and adequate sanitation that ends up in death of millions of people in developing countries every year. Diarrhea is the major cause for the death of more than 2 million people per year world-wide, majority of which are children aged less than 5 years [1]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.