Abstract
Activated carbons with high specific surface areas were produced, utilizing waste polyester textiles as carbon precursor by magnesium oxide (MgO) template method. Magnesium chloride (MgCl2), magnesium citrate (MgCi), and MgO were employed as MgO precursors to prepare activated carbons (AC-MgCl2, AC-MgCi, and AC-MgO). Thermogravimetry-differential scanning calorimetry was conducted to investigate the pore-forming mechanism, and N2 adsorption/desorption isotherms, XRD, SEM-EDS, TEM, FTIR and pHpzc were achieved to analyze physicochemical characteristics of the samples. The specific surface areas of AC-MgCl2 (1173m2/g) and AC-MgCi (1336m2/g) were much higher than that of AC-MgO (450m2/g), and the pores sizes of which were micro-mesoporous, mesoporous, and macropores, respectively, due to the formation of MgO crystal with different sizes. All activated carbons had abundant acidic oxygen groups. In addition, batch adsorption experiments were carried out to investigate the adsorptive characteristics of the prepared activated carbons toward Cr(VI). The adsorption kinetics fitted well with the pseudo-second order, and the adsorptive capacity of AC-MgCl2 (42.55mg/g) was higher than those of AC-MgCi (40.93mg/g) and AC-MgO (35.87mg/g).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Environmental science and pollution research international
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.