Abstract
In this study, the adsorption characteristics of novel activated biocarbons prepared from horsetail herb (a popular and troublesome weed) by physical activation (using carbon dioxide) and chemical one (using phosphoric(V) acid) in the process of simultaneous proteins immobilization in multicomponent solutions were examined. The carbon materials were characterized in terms of their porous structure, acidic-basic properties, and surface morphology. The binding mechanisms of such proteins as bovine serum albumin (BSA) and lysozyme (LSZ), differing in internal stability, were determined alone and in their blends. This was done based on the comprehensive analysis of the results of adsorption/desorption, surface, electrokinetic and stability measurements. These experiments were carried out over a wide pH range of 3-11. They included the following issues: (1) determination of the protein adsorbed/desorbed amounts on/from a surface of activated biocarbons; (2) study of the kinetics of these processes; (3) examination of the macromolecules impact on the surface charge density and zeta potential of the carbon materials; and (4) determination of the suspension stability and size of aggregates formed in the examined systems. The analysis of the obtained results indicated the differences in the binding mechanism of both proteins that is of key importance for their simultaneous immobilization on activated biocarbons surface in the soil environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.