Abstract
Reactions of reducing sugars with free amino groups of proteins can form advanced glycation end products (AGEs). While the formation of nucleoside AGEs has been studied in detail, no extensive work has been carried out to assess DNA Amadori and DNA advanced glycation end products. In this study, we report biophysical/chemical characterization of glucose-induced changes in DNA, as well as DNA Amadori and DNA advanced glycation end products. Glucose treated DNA exhibited hyperchromicity, decrease in melting temperature, and enhanced emission intensity in a time dependent manner. Formation of DNA Amadori product and DNA advanced glycation end products, mainly CEdG (N2-carboxyethyl-2′-deoxyguanosine), were the major outcome of the study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.