Abstract
AbstractInsertion of 2:1 organo‐modified phyllosilicate tactoids into rheologically tough thermoplastics has extraordinary potential candidate in oxygen permeability and microstructural toughening. Herein, two commercially abundant clays have been taken for improvement of the thermoplastic's gas barrier property in reasonably low loading. The cause of low loading has been accounted to the usage of maleated polyethylene (MA‐g‐PE) during the melt mixing tenure. The optimized nanocomposite compression molded film has been tested against uniaxial stretching, which showed a negligible change in the residual permanent set with sacrificing the elongation at break feature. Moreover, nanoindentation was also performed to get the hardness of the sample surface. The flow behavior of the nanocomposites showed thixotropic likely with increasing the frequency. Oxygen transmission rate (OTR) has significantly decreased for tallow amine‐modified nanoclay system (cloisite 15A) in comparison to cloisite Na+ providing 'tortoise path' formation inside the matrix. Thus, hitherto, the work could demonstrate and provide the information of comparative studies between organo‐clay and simple phyllosilicates, which could be remediation of the loopholes in mechanical toughening and gas barrier lineaments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.