Abstract
The limitations of commercially available tissue sealants have resulted in the need for a new tissue adhesives with adequate adhesion, improved mechanical properties, and innocuous degradation products. To address current limitations, a visible light cross-linking method for the preparation of hydrogel tissue sealants, based on natural polymers (chitosan or alginate), is presented. Water-soluble chitosan was generated via modification with vinyl groups. To form hydrogels, alginate and chitosan were cross-linked by green light illumination, with or without the use of a bifunctional cross-linker. Evaluation of the mechanical properties through rheological characterization demonstrated an increased viscosity of polymer blends, and differences in shear moduli despite similar gelation points upon photo-cross-linking. A comparative study on the burst pressure properties of liquid versus solid material applications was performed to determine if the tissue sealants can perform under physiological lung pressures and beyond using different application methods. Higher burst pressure values were obtained for the sealants applied as a liquid compared to the solid application. The hydrogel tissue sealants revealed no cytotoxic effects toward primary human mesenchymal stem cells. This is the first report of a direct comparison between hydrogel tissue sealants of the same formulation applied in liquid versus solid form.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.