Abstract

Gelatin films incorporated with bergamot (BO) and lemongrass oil (LO) at various concentrations as glycerol substitute were prepared and characterised. Incorporation of BO and LO at 5–25% (w/w protein) resulted in the decreases in both tensile strength (TS) and elongation at break (EAB) of the films. Water vapour permeability (WVP) were decreased in LO incorporated films, while it was increased in film added with BO at level higher than 5% (P < 0.05). Film solubility and transparency values decreased, and the films had the lowered light transmission in the visible range when BO and LO were incorporated. Films incorporated with LO showed inhibitory effect in a concentration dependent manner against Escherichia coli, Listeria monocytogenes, Staphylococcus aureus and Salmonella typhimurium, but BO added film inhibited only L. monocytogenes and S. aureus. Films containing both BO and LO did not inhibit Pseudomonas aeruginosa. Significant change of molecular organisation and higher intermolecular interactions among gelatin molecules were found in the film structure as determined by FTIR. Thermo-gravimetric analysis (TGA) demonstrated that films added with BO and LO exhibited enhanced heat stability with higher degradation temperature, compared with control film. Scanning electron microscopic (SEM) images revealed the presence of micro-pores in the essential oil incorporated films, which contributed to physical properties of the resulting films. Thus, gelatin films incorporated with BO and LO can be used as active packaging, but the properties could be modified, depending on essential oil added.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call