Abstract

Physico-chemical properties of HspB6 S10F and P20L mutants with abrogated cardioprotective activity and associated with different forms of cardiomyopathy were analyzed. Under normal conditions both the wild-type HspB6 and its mutants formed small size oligomers (dimers) with apparent molecular weight of 50–60 kDa. Under crowding conditions (0.5 M trimethylamine N-oxide, TMAO) the wild-type HspB6 remained predominantly dimeric or formed small molecular weight complexes, whereas both mutants tended to form high molecular weight complexes. Catalytic subunit of cAMP-dependent protein kinase phosphorylated the wild-type HspB6 and its S10F mutant with comparable rate. The rate of P20L mutant phosphorylation was higher than that of the wild-type HspB6. S10F and P20L mutations did not affect interaction of phosphorylated HspB6 with universal adapter proteins 14-3-3. The wild-type HspB6 was resistant to heat-induced denaturation and aggregation, whereas both its mutants were denatured and started to aggregate at temperature much lower than its wild-type counterpart. Titration with fluorescent probe bis-ANS was accompanied by larger increase of fluorescence in the case of both mutants than in the case of the wild-type HspB6. Both mutants possessed higher chaperone-like activity than the wild-type protein. It is concluded that both S10F and P20L mutations are accompanied by increase of hydrophobicity of the very N-terminal region of HspB6 leading to increased aggregation at elevated temperature, formation of large complexes under crowding conditions and increased chaperone-like activity measured in vitro. Increased hydrophobicity and self-association can affect substrate specificity and interaction with certain target proteins thus leading to decrease or complete abrogation of cardioprotective activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call