Abstract

Four commercial pea protein isolates were analyzed for their physico-chemical properties including water absorption capacity (WAC), least gelation concentration (LGC), rapid visco analyzer (RVA) pasting, differential scanning calorimetry (DSC)-based heat-induced denaturation and phase transition (PTA) flow temperature. The proteins were also extruded using pilot-scale twin-screw extrusion with relatively low process moisture to create texturized plant-based meat analog products. Wheat-gluten- and soy-protein-based formulations were similarly analyzed, with the intent to study difference between protein types (pea, wheat and soy). Proteins with a high WAC also had cold-swelling properties, high LGC, low PTA flow temperature and were most soluble in non-reducing SDS-PAGE. These proteins had the highest cross-linking potential, required the least specific mechanical energy during extrusion and led to a porous and less layered texturized internal structure. The formulation containing soy protein isolate and most pea proteins were in this category, although there were notable differences within the latter depending on the commercial source. On the other hand, soy-protein-concentrate- and wheat-gluten-based formulations had almost contrary functional properties and extrusion characteristics, with a dense, layered extrudate structure due to their heat-swelling and/or low cold-swelling characteristics. The textural properties (hardness, chewiness and springiness) of the hydrated ground product and patties also varied depending on protein functionality. With a plethora of plant protein options for texturization, understanding and relating the differences in raw material properties to the corresponding extruded product quality can help tailor formulations and accelerate the development and design of plant-based meat with the desired textural qualities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.