Abstract

Humins have already shown their potential as thermosetting resins to produce crosslinked networks and composites, with a large variety of properties depending on the used macromolecular approach. Our group has shown that a very interesting class of materials with tunable flexibility can be made by humins co-polymerization with glycerol diglycidyl ether (GDE). To create a clearer picture on structure-reactivity-properties-application interdependent relationship, a principal component analysis (PCA) was applied on several humins batches. The PCA allowed to obtain a clear discrimination between the humins/GDE resins samples in 3 groups which correlate very well with the results of copolymerization reactivity (DSC) and thermosets properties: crosslink density, thermal stability, tan δ, Shore D hardness values, etc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call