Abstract
Conjugated linoleic acid (CLA) is a mixture of positional and geometric isomers of octadecadienoic acid [linoleic acid (LA), 18:2n-6]. Although ruminant milk and meat products represent the largest natural source of CLA and therefore, their concentration in ruminant lipids are of interest to human health, chemical or physical modifications of CLA should be needed as a means to enhance oxidative stability, to improve post-ruminal bioavailability, and to increase the clinical application. In fact, CLA are rapidly decomposed to form furan fatty acids when its are oxidized in air, and the effectiveness of dietary supplements of CLA may be related to the extent that their metabolisms by rumen bacteria are avoided. For these reasons, many scientists have examined the effect of manufacturing and protection on the stability of CLA in ruminants and food products. In this review, physico-chemical modifications of CLA for ruminal protection such as calcium salt (Ca), formaldehyde protection (FP), lipid encapsulation (LE), and amide linkage (AL), and for oxidative stability such as green tea catechin (GTC), cyclodextrin (CD), arginine (Arg), amylase, and PEGylation are proposed.
Highlights
Conjugated linoleic acid (CLA) are a collective term for a group of positional (C8,C10; C9,C11; C10,C12; and C11,C13) and geometric isomers of octadecadienoic acid with a conjugated double-bond system [1]
We previously reported that PEGylated CLA (PCLA) had increased bioavailability than CLA due to the biocompatible and hydrophilic properties of Poly(ethylene glycol) (PEG), and peroxisome proliferator activated receptor gamma 2-induced adipogenesis was reduced by PCLA [79]
The CLA contents of milk, dairy products, meat, and meat products vary widely, and the CLA intake by humans have the potential to increase to a level that have been shown to reduce the incidence of cancer in animal models through the consumption of CLA-enriched dairy and beef products
Summary
Conjugated linoleic acid (CLA) are a collective term for a group of positional (C8,C10; C9,C11; C10,C12; and C11,C13) and geometric (cis,cis; cis,trans; trans,cis; and trans,trans) isomers of octadecadienoic acid (linoleic acid, LA) with a conjugated double-bond system [1]. The CLA are effective in protecting tissues from carcinogenesis [2], reducing the development of atherosclerosis [3], stimulating the immune system [4], and inducing enzyme change in mouse liver [5,6]. These effects appear to be mediated by two isomers of CLA, and the two biologically active isomers are the cis, trans and trans, cis12 [7,8]. This review is attempted to propose various physico-chemical modification methods of CLA for ruminal protection and oxidative stability, and the potential of clinical applications of CLA is explained
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.