Abstract

ABSTRACT Substituting biogas for Liquefied Petroleum Gas (LPG) in households is a long-awaited sustainable solution for the increasing cost of energy and large amounts of household human-generated waste. Nevertheless, a study of the characteristics of feedstocks is essential to maximise their energy potential. Consequently, this study examined the physico-chemical properties of Human Excreta (HE), Food Leftovers (FLO), Kitchen Residue (KR) and Cow Dung (CD) of Ghanaian origin adhering to recommended standards. Results for volatile to total solid ratios (VS/TS) were 0.81 ± 0.001, 0.97 ± 0.001,0.89 ± 0.001 and 0.85 ± 0.001 for HE, FLO, KR and CD, respectively. The results showed that all feedstocks had high biodegradable content, making them desirable for biogas production. The carbon-to-nitrogen (C/N) ratios determined from the elemental compositions were 8.29 ± 0.09, 22.14 ± 0.26, 23.34 ± 0.25 and 26.19 ± 0.47 for HE, FLO, KR and CD, respectively. Although the C/N ratios for FLO, KR and CD were within the optimal range, that of HE was significantly low. With a mean alkalinity of 1219.67 ± 1.53, 630.00 ± 0.58, 590.00 ± 2.08 and 15,730.00 ± 6.00 mg CaCO3 eq./L for HE, FLO, KR and CD, it was observed that only CD has the optimal alkalinity value for anaerobic digestion. This brings into perspective the need for co-digestion and the choice of potential co-substrates for household biogas production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call