Abstract

AbstractWaste‐to‐energy is a promising approach to face the current challenge of waste overproduction in Reunion Island, a French territory. In this particular context of an isolated and tropical territory, it is essential to study the properties of potential feedstocks to choose the most appropriate conversion process. This article reports on the composition of Residual Household Waste from Reunion Island and its physico‐chemical parameters. Twelve representative samples of Residual Household Waste were subjected to thermal and elemental analysis. The results showed that their composition had a significant influence on the physico‐chemical properties, including calorific value. Residual Household Waste from the selective sorting (rich in wood, plastic, and sanitary textiles) as well as dry mixed RHW are the most interesting for energy recovery. Due to their high volatile matter and high carbon content, and their low moisture content, these types of waste have a high calorific value exceeding 18 MJ/kg. Furthermore, the RHW sample comply with the environmental and health criteria applied by French regulations concerning halogen and heavy metal. Thus, it seems that Residual Household Waste can be an alternative to conventional fuels used in incineration or pyro‐gasification processes. However, the study also points the need for a pre‐treatment process for these wastes. Indeed, it is necessary to sort them correctly in order to avoid the risks of pollution and important maintenance. And more importantly, drying beforehand is unavoidable to improve combustibility and obtain optimal energy conversion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call