Abstract

BackgroundKajjali is used as a base for Ayurvedic herbo-mineral medicines. It is a combination of mercury with sulfur in varying proportions. The ratio of sulfur (S) added to mercury (Hg) directly relates to the therapeutic efficacy of the compound. ObjectiveTo analyze the physico-chemical characteristics of samaguna gandhaka kajjali (Hg: S = 1:1) and shadaguna gandhaka kajjali (Hg: S = 1:6). Materials and methodsX-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy (XPS), Fourier transmission infrared spectroscopy, thermo-gravimetry analysis, and atomic absorption spectroscopy were applied to characterize each type of kajjali. ResultsIt was found that the particle size of the formed kajjali compound increases with a decrease in the mercury to sulfur ratio. The presence of excess sulfur does not change the surface oxidation states as revealed by the XPS analysis. No trace of mercury has been found in both samaguna gandhaka kajjali (SGK-1) and shadguna gandhaka kajjali (SGK-6), indicating a complete Hg reaction with S. ConclusionKajjali simulates nanomaterial of the modern era and possesses therapeutic efficacy as mentioned in classical Ayurveda texts. Complete trituration of mercury and sulfur combination ends up with this kajjali formation incorporating the potency of nanotherapeutics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call