Abstract
A 3D polymer‐network‐membrane (3D‐PNM) electrolyte is described for highly stable, solid‐state dye‐sensitized solar cells (DSCs) with excellent power‐conversion efficiency (PCE). The 3D‐PNM electrolyte is prepared by using one‐pot in situ cross‐linking polymerization on the surface of dye‐sensitized TiO2 particles in the presence of redox species. This method allows the direct connection of the 3D‐PNM to the surface of the TiO2 particles as well as the in situ preparation of the electrolyte gel during device assembly. There are two junction areas (liquid and solid‐state junctions) in the DSCs that employ conventional polymer electrolytes, and the major interface is at the liquid‐state junction. The solid‐state junction is dominant in the DSCs that employ the 3D‐PNM electrolyte, which exhibit almost constant performance during aging at 65 °C for over 700 h (17.0 to 17.2 mA cm–2). The best cell performance gives a PCE of 9.1%; this is slightly better than the performance of a DSC that employs a liquid electrolyte.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.