Abstract

Quantum systems prepared in pure states evolve into mixtures under environmental action. Physically realizable ensembles are the pure state decompositions of those mixtures that can be generated in time through continuous measurements of the environment. Here, we define physically realizable entanglement as the average entanglement over realizable ensembles. We optimize the measurement strategy to maximize and minimize this quantity through local observations on the independent environments that cause two qubits to disentangle in time. We then compare it with the entanglement bounds for the unmonitored system. For some relevant noise sources the maximum realizable entanglement coincides with the upper bound, establishing the scheme as an alternative to locally protect entanglement. However, for local strategies, the lower bound of the unmonitored system is not reached.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.