Abstract

This study introduces an innovative approach leveraging physics-informed neural networks (PINNs) for the efficient computation of blood flows at the boundaries of a four-vessel junction formed by a Fontan procedure. The methodology incorporates a 3D mesh generation technique based on the parameterization of the junction’s geometry, coupled with an advanced physically regularized neural network architecture. Synthetic datasets are generated through stationary 3D Navier–Stokes simulations within immobile boundaries, offering a precise alternative to resource-intensive computations. A comparative analysis of standard grid sampling and Latin hypercube sampling data generation methods is conducted, resulting in datasets comprising 1.1×104 and 5×103 samples, respectively. The following two families of feed-forward neural networks (FFNNs) are then compared: the conventional “black-box” approach using mean squared error (MSE) and a physically informed FFNN employing a physically regularized loss function (PRLF), incorporating mass conservation law. The study demonstrates that combining PRLF with Latin hypercube sampling enables the rapid minimization of relative error (RE) when using a smaller dataset, achieving a relative error value of 6% on the test set. This approach offers a viable alternative to resource-intensive simulations, showcasing potential applications in patient-specific 1D network models of hemodynamics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.