Abstract

Physically cross-linked isotropic and anisotropic poly(vinyl alcohol) (PVA) hydrogels containing micron-sized carbonyl iron particles were prepared through a cyclic freezing–thawing process. The PVA hydrogel can respond to a magnetic field and shows a magnetorheological (MR) effect, i.e., the modulus of the PVA hydrogel can be adjusted under a magnetic field. The chain-like structures of carbonyl iron are formed in the PVA hydrogel after orientation under a magnetic field of 1.5 T. Also some magnetic field induced oriented pores with a tunable diameter are observed in the dried PVA gel. The MR effect can be adjusted by changing the carbonyl iron content, the initial concentration of PVA solution and test frequency. The formation of aligned chain-like structures of carbonyl iron in the anisotropic PVA MR hydrogel improves the compression properties and the MR effect. At a carbonyl iron content of 70 wt%, the maximum absolute and relative MR effect of anisotropic PVA MR hydrogels are ∼1.24 MPa and ∼230%, respectively. The PVA hydrogels with good MR effects and moderate mechanical strength have potential applications in artificial muscle, soft actuators and drug release.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call