Abstract

Although great progress has been made in hydrogel electrolytes for flexible energy storage devices, polyvinyl alcohol (PVA)-based hydrogel electrolytes that combine high self-repairability, stretchability and wide operating temperatures are still a challenge. Here, a novel physically cross-linked self-healing dual-network hydrogel electrolyte (PVA/Agar-EMIMBF4-Li2SO4) is prepared by simple one-pot physical crosslinking and freezing/thawing methods. It was found that the dual-network hydrogel formed after agar addition had better tensile properties than the single-network hydrogel (PVA-EMIMBF4-Li2SO4), and it has excellent flexibility with negligible capacities loss at different bending angles. Interestingly, the dual-network hydrogel electrolyte has excellent temperature tolerant when it contains ionic liquids. Specifically, the dual-network hydrogel electrolyte-based flexible supercapacitor delivers high capacities under a wide operating temperature range of −30 °C to 80 °C. Moreover, the dual-network hydrogel exhibits good self-healing ability, and the healing efficiency can reach more than 80% of the initial state after five self-healing cycles. Our research on PVA-based hydrogel with wide-temperature adaptability, self-repairability and mechanical flexibility presents an encouraging pathway toward other flexible energy storage devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.