Abstract

Resonances, also known as quasi normal modes (QNM) in the non-Hermitian case, play an ubiquitous role in all domains of physics ruled by wave phenomena, notably in continuum mechanics, acoustics, electrodynamics, and quantum theory. In this paper, we present a QNM expansion for dispersive systems, recently applied to photonics but based on sixty year old techniques in mechanics. The resulting numerical algorithm appears to be physically agnostic, that is independent of the considered physical problem and can therefore be implemented as a mere toolbox in a nonlinear eigenvalue computation library.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.