Abstract

In this paper, we investigate physical-layer security of the uplink millimeter wave communications for a cellular vehicle-to-everything (C-V2X) network comprised of a large number of base stations (BSs) and different categories of V2X nodes, including vehicles, pedestrians, and road side units. Considering the dynamic change and randomness of the topology of the C-V2X network, we model the roadways, the V2X nodes on each roadway, and the BSs by a Poisson line process, a 1D Poisson point process (PPP), and a 2D PPP, respectively. We propose two uplink association schemes for a typical vehicle, namely, the smallest-distance association (SDA) scheme and the largest-power association (LPA) scheme, and we establish a tractable analytical framework to comprehensively assess the security performance of the uplink transmission, by leveraging the stochastic geometry theory. Specifically, for each association scheme, we first obtain new expressions for the association probability of the typical vehicle, and then derive the overall connection outage probability and secrecy outage probability by calculating the Laplace transform of the aggregate interference power. Numerical results are presented to validate our theoretical analysis, and we also provide interesting insights into how the security performance is influenced by various system parameters, including the densities of V2X nodes and BSs. Moreover, we show that the LPA scheme outperforms the SDA scheme in terms of secrecy throughput.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.