Abstract
This paper studies the physical-constraints-preserving (PCP) Lagrangian finite volume schemes for one- and two-dimensional special relativistic hydrodynamic (RHD) equations. First, the PCP property (i.e. preserving the positivity of the rest-mass density and the pressure and the bound of the velocity) is proved for the first-order accurate Lagrangian scheme with the HLLC Riemann solver and forward Euler time discretization. The key is that the intermediate states in the HLLC Riemann solver are shown to be admissible or PCP when the HLLC wave speeds are estimated suitably. Then, the higher-order accurate schemes are proposed by using the high-order accurate strong stability preserving (SSP) time discretizations and the scaling PCP limiter as well as the WENO reconstruction. Finally, several one- and two-dimensional numerical experiments are conducted to demonstrate the accuracy and the effectiveness of the PCP Lagrangian schemes in solving the special RHD problems involving strong discontinuities, or large Lorentz factor, or low rest-mass density or low pressure, etc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.