Abstract

Objective: Evaluate the physical-chemical properties and characterize the microstructure of four varieties of traditional Mexican chili (Capsicum annuum L.) powders: “Arbol”, “Guajillo”, “Piquin” and “Mole ranchero” (Ancho chili).
 Design/methodology/approach: Physical-chemical properties of chili powders were evaluated by means of moisture content, particle size, aerated and tapped bulk density, Carr index, Hausner ratio, angle of repose (flow properties), capsaicin, and carotenoids content. Microstructure of samples was characterized by Confocal Laser Scanning Microscopy and Scanning Electron Microscopy. ANOVA analysis and Tukey test were performed to evaluate the significant statistical difference between samples at 95% of confidence level.
 Results: “Arbol”, “Guajillo”, “Piquin” and “Mole Ranchero” chili powders presented a cohesive behavior respect to its flow properties related to aerated and tapped bulk density, angle of repose, Carr Index, and Hausner ratio values under moisture content between 6.59-14.48 gH2O/100g d.s. “Arbol” and “Piquin” chili powders presented the higher capsaicin content, while “Guajillo” and “Mole ranchero” showed the higher carotenoids content. FTIR spectra confirmed the presence of secondary amide, phenolic groups, alkanes, and aliphatic chains that belong to capsaicin structure at specific absorption bands. Microstructure of chili powders presented particles with surface imperfections as cracks and dents, and smooth surface that influence physical-chemical and flowability properties.
 Limitations on study/implications: Hight moisture content affect the physical-chemical properties, flowability and microstructure of traditional Mexican chili powders.
 Findings/conclusions: Moisture content between 6.59 and 14.48 gH2O/100g d.s. influences the physical-chemical properties, flowability and microstructure of traditional Mexican chili powders. To improve physical-chemical properties and flowability behavior of chili powders is required that moisture content be lower than 6.59 H2O/100g d.s.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.