Abstract

This article presents the investigation of a nonlinear Lamb wave time reversing technique for fatigue crack detection and quantification. A 2D analytical framework is initially presented, modeling Lamb wave generation, propagation, wave crack linear and nonlinear interaction, and reception. This study extends the Time Reversal (TR) techniques into the realm of nonlinear Lamb waves. Due to the structural transfer function variation between the forward and backward transmission process, the Virtual Time Reversal (VTR) algorithm reveals obvious deviation for predicting nonlinear Lamb waves, given that it replaces the backward TR procedure with the forward transfer function. However, this study demonstrates that the difference between the physical nonlinear TR method and the conventional VTR algorithm proves to be sensitive to detect and quantify fatigue cracks. Fatigue tests on a thin aluminum plate with a rivet hole are conducted to induce a fatigue crack. The experimental results further illuminate that the proposed physical-virtual nonlinear Lamb wave TR technique possesses remarkable sensitivity to the nucleation and growth of fatigue cracks. The paper finishes with discussion, concluding remarks, and suggestions for future work.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call