Abstract

Purpose7075-T6 is the most widespread structural aluminium alloy due to its high mechanical strength. However, use of this alloy in critical aeronautic, maritime, and automotive sectors is limited by the susceptibility of T6 treatment to cracking and pitting corrosion. To improve fatigue behaviour in aggressive environments, several authors have proposed the use of different coatings to protect the substrate. Studies have investigated the application of thin hard coatings on light alloys by physical vapour deposition (PVD). Different contributions of residual stresses, thermal modification of the substrate, and mechanical interaction between the coating and aluminium substrate were investigated. The purpose of this paper is to investigate the rotating bending fatigue behaviour (R=−1) of 7075-T6 PVD diamond-like carbon (DLC)-coated specimens in air and in a corrosive environment. Tests were conducted at different applied stresses. Scanning electron micrographs of the fracture surface are provided to investigate the influences of mechanical and environmental driving forces on the failure mechanism.Design/methodology/approachThe paper conducted an experimental study of the fatigue resistance of DLC coatings on a 7075-T6 substrate for corrosion protection at long and short fatigue lives, which includes rotating bending fatigue tests, step-loading fatigue test procedure, tests in aggressive environment (methanol), tests at high and low fatigue lives, analysis of the fracture surface, and analysis of the driving forces.FindingsTests performed in air showed that the coating anticipates crack nucleation for high applied loads, whereas for lower loads, the difference among fatigue curves decreases. This result is very interesting from an industrial standpoint because the obtained material shows improved corrosion and wear resistance, without the fatigue resistance loss generally associated with hard coatings. The methanol environment accelerates crack nucleation and propagation, resulting in a sensible deterioration of the fatigue behaviour. A minimum soaking time seems to be necessary before the damaging effect of the environment begins. The coating has a certain protective effect against the environment, but this protection is insufficient for the specimen to achieve fatigue limits beyond those of the uncoated specimens. This deficiency can be related to small pores or defects in the coating, which allow contact between the substrate and the environment. Further tests are necessary to verify whether there exists a load under which the fatigue behaviour of the coated specimens is better than that of the uncoated specimens. Crack nucleation due to fatigue occurs close to the outer surface for all observed samples. For coated samples tested at the lowest stress level, crack nucleation seems to be located below the surface. This observation means that premature coating cracking, which characterises the nucleation mechanism at higher loads, did not occur at lower stress levels. The fracture surface of uncoated samples was clearly damaged by the aggressive solution, justifying the poor fatigue resistance.Research limitations/implicationsThe obtained data do not represent actual S-N curves, which would necessitate a larger number of tests with proper statistics. Nevertheless, some indications of the DLC effects on 7075-T6 specimens in air and methanol environments can be deduced. The step-loading technique seems to be critical for tests in corrosive environments, probably because the total soaking time in the corrosive environment is generally higher than it is for the single-run test.Originality/valueThe originality of the paper lies in the application of the step-loading test procedure to quickly detect the mechanical and chemical driving forces that control the damage and structural integrity of light alloys components in very aggressive environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call