Abstract

AbstractThe crystallization behavior of poly(ethylene terephthalate) both with and without sodium montanate, a crystal nucleating agent, has been studied using the microhardness technique. The kinetics of crystallization from the glassy state were investigated in real time by measuring the microhardness H at different crystallization temperatures. Results are discussed in terms of the Avrami equation. Values of the Avrami exponent n of about 3 are observed for samples irrespective of nucleating agent. For samples with nucleant two crystallization ranges are observed: a first range which corresponds to a fast crystallization from nucleating agent particles and a second range which is associated with a slow self‐crystallization mode. New transitions evidenced by the presence of a small maximum in H as a function of annealing time and temperature are detected at temperatures above Tg for physically aged samples. The kinetics of this transition have also been examined. It is further shown that the presence of nucleating agent induces a hardening at room temperature which is similar to the effect produced by the physical aging of the samples below Tg. Finally, it is found that aging reduces the rate of creep of the material under the indenter. © 1993 John Wiley & Sons, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.