Abstract

To investigate one potential mechanism whereby physical training improves the plasma concentration of ketone bodies in experimental diabetes mellitus, we measured the activity of 3-ketoacid CoA-transferase, the key enzyme in the peripheral utilization of ketone bodies. Diabetes was induced with streptozotocin (50 mg/kg) and training carried out on a treadmill with a progressive 10-wk program. Diabetes resulted in an increase (P < 0.001) in plasma concentration of beta-hydroxybutyric acid in sedentary rats, which was partly reversed by training (P < 0.001). Diabetes was also associated with a decreased activity of 3-ketoacid CoA-transferase in gastrocnemius muscle. When expressed per total gastrocnemius, training increased the activity of 3-ketoacid CoA-transferase by 66% in nondiabetic rats (P < 0.001) and by 150% in diabetic rats (P < 0.001), the decrease present in diabetic rats being fully reversed by training. Simple linear regression between the log of 3-ketoacid CoA-transferase activity and the log of plasma beta-hydroxybutyric acid levels showed a statistically significant (r = 0.563, P < 0.001) negative correlation. The beneficial effects of training on plasma ketone bodies in diabetic rats are probably explained, at least in part, by an increase in ketone body utilization, mediated by an increase in skeletal muscle 3-ketoacid CoA-transferase activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call