Abstract
Knowledge of the up-to-date physical (i.e., layer-2) topology of an Ethernet network is crucial to a number of critical network management tasks, including reactive and proactive resource management, event correlation, and root-cause analysis. Given the dynamic nature of today's IP networks, keeping track of topology information manually is a daunting (if not impossible) task. Thus, effective algorithms for automatically discovering physical network topology are necessary. In this paper, we propose the first complete algorithmic solution for discovering the physical topology of a large, heterogeneous Ethernet network comprising multiple subnets as well as (possibly) dumb or uncooperative network elements. Our algorithms rely on standard SNMP MIB information that is widely supported in modern IP networks and require no modifications to the operating system software running on elements or hosts. Furthermore, we formally demonstrate that our solution is complete for the given MIB data; that is, if the MIB information is sufficient to uniquely identify the network topology then our algorithm is guaranteed to recover it. To the best of our knowledge, ours is the first solution to provide such a strong completeness guarantee.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.