Abstract

m-toluic acid (MTA) is widely used in manufacturing of dyes, pharmaceuticals, polymer stabilizers, and insect repellents. The aim of present study was to evaluate the impact of biofield treatment on physical, thermal and spectroscopic properties of MTA. MTA sample was divided into two groups that served as treated and control. The treated group received Mr. Trivedi’s biofield treatment. Subsequently, the control and treated samples were evaluated using X-ray diffraction (XRD), surface area analyser, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR) and ultraviolet-visible (UV-Vis) spectroscopy. XRD result showed a decrease in crystallite size in treated samples i.e. 42.86% in MTA along with the increase in peak intensity as compared to control. However, surface area analysis showed an increase in surface area of 107.14% in treated MTA sample as compared to control. Furthermore, DSC analysis results showed that the latent heat of fusion was considerably reduced by 40.32%, whereas, the melting temperature was increased (2.23%) in treated MTA sample as compared to control. The melting point of treated MTA was found to be 116.04°C as compared to control (113.51°C) sample. Moreover, TGA/DTG studies showed that the control sample lost 56.25% of its weight, whereas, in treated MTA, it was found 58.60%. Also, Tmax (temperature, at which sample lost maximum of its weight) was decreased by 1.97% in treated MTA sample as compared to control. It indicates that the vaporisation temperature of treated MTA sample might decrease as compared to control. The FT-IR and UV-Vis spectra did not show any significant change in spectral properties of treated MTA sample as compared to control. These findings suggest that biofield treatment has significantly altered the physical and thermal properties of m-toluic acid, which could make them more useful as a chemical intermediate.

Highlights

  • The m-toluic acid (MTA) is a benzoic acid derivative having a floral honey odour

  • X-ray diffraction study was conducted to study the crystalline nature of the control and treated sample of MTA

  • X-ray diffraction (XRD) result showed that crystallite size was decreased by 42.86% in treated MTA samples as compared to control, which might be due to fracturing of grains into sub grains caused by lattice strain produced via biofield energy

Read more

Summary

Introduction

The m-toluic acid (MTA) is a benzoic acid derivative having a floral honey odour. Benzoic acid occurs naturally in many plants and its name was derived from a plant source i.e. Gum benzoin. Percent change in melting point was calculated to observe the difference in thermal properties of treated MTA sample as compared to control. The percentage increase in surface area was 107.14% in the treated MTA sample as compared to control (Figure 2).

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.