Abstract

In the past decade, calcium aluminate cement is widely used to manufacture refractory concrete for infrastructure works which frequently were subjected to elevated temperature thanks to the thermal stability by the high content of aluminum. This paper presents experimental results of the physical, thermal, and mechanical properties of calcium aluminate cement-based refractory concrete specimens. As experimental results, with a calcium aluminate content of about 50%, the refractory concrete provides remarkable physical, thermal, and mechanical properties. The high density and low water content were characterized for this concrete. The thermal diffusivity coefficient of refractory concrete is lower from 3 to 4 times than that of normal concrete while the conductivity is around of 1.05 (W/m.K). Furthermore, from the thermomechanical tests, the direct tensile strength and Young’s modulus of refractory concrete were identified at different temperature levels. The effect of elevated temperature on the performance of this refractory concrete was analyzed and highlighted

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call