Abstract

The oxidation of edible oil yields both primary and secondary oxidation products (e.g., hydroperoxides, carbonyls, hydrocarbons, and epoxides), which produce undesirable sensory and biological effects. Consequently, the suppression of lipid oxidation in food matrices is of great importance. The rate and extent of lipid oxidation in many heterogeneous foods are strongly affected by the physicochemical characteristics of water-oil interfaces. This study examined the ability of dioleoylphosphatidylcholine (DOPC) and water to form association colloids within bulk oil, as well as their impact on lipid oxidation kinetics. Attenuation was used to show the DOPC and water concentrations at which association colloids existed without altering the optical properties of the oil. Interfacial tension and fluorescence spectrometry showed the critical micelle concentration (CMC) of DOPC in stripped soybean oil was around 650 μM at room temperature. Small-angle X-ray scattering (SAXS) and fluorescence probes showed that water had a very strong impact on the properties of the association colloids formed by DOPC. Measurement of primary and secondary lipid oxidation products revealed that the association colloids formed by DOPC had a pro-oxidant effect. The characterization of association colloids could provide a better understanding of the mechanisms of lipid oxidation in bulk oils and provide insights into new antioxidant technologies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.