Abstract

In recent years, interest in submicron emulsions has increased due to their high stability and potential applications in the encapsulation and release of active ingredients in many industrial fields, such as the food industry, pharmaceuticals or agrochemicals. Furthermore, the social demand for eco-friendly solutions to replace hazardous solvents in many dispersion formulations has steadily risen. In this study, the influence of surfactant concentration on the formation and physical stability of submicron oil-in-water emulsions using a high-pressure dual-channel homogenizer (microfluidizer) has been investigated. The formulation involved the use of a blend of two green solvents (N,N-dimethyldecanamide and α-pinene) as dispersed phase and a nonionic polyoxyethylene glycerol ester derived from coconut oil as emulsifier (Levenol® C-201), which enjoys a European eco-label. Therefore, these emulsions may find applications as matrices for agrochemicals. Physical stability and rheological properties of the emulsions studied showed an important dependence on the eco-friendly surfactant concentration. The lowest surfactant concentration (1wt%) yielded the onset of a creaming process after a short aging time and was not enough to avoid recoalescence during emulsification. On the other hand, the higher surfactant concentrations (4–5wt%) resulted in depletion flocculation, which in turn triggered emulsion destabilization by coalescence. The optimum physical stability was exhibited by emulsions containing intermediate surfactant concentrations (2–3wt%) since coalescence was hardly significant and the onset of a weak creaming destabilization process was substantially delayed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.