Abstract

A key point in the underground coal gasification process is the cavity evolution in the horizontal segment. The morphological evolution law of the gasification cavity has not been clarified, which is the bottleneck restricting the analysis of its controllability. In this paper, a physical simulation system for cavity generation was developed, and the cavity evolution in a targeted coal seam with overburden pressure was duplicated in the laboratory. A set of temperature field synchronous monitoring devices was developed to realize temperature sampling within a cavity and the surrounding rock. By analyzing the relationship between the overall temperature distribution pattern and the gasification agent injection condition, the morphological propagation law of the cavity is verified to be water drop-shaped, and influencing factors including the injection flow rate and the gasification agent component ratio are investigated. The axial length and volume of the cavity increase with an increasing injection flow rate. Higher oxygen content results in increased size in all dimensions. The research results provide theoretical support and reference for applying controlled cavity formation in the horizontal segment of U-shaped wells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call