Abstract

AbstractProgramming the motions of an autonomous planetary robot moving in an hostile and hazardous environment is a complex task which requires both the construction of nominal motion plans and the anticipation as far as possible of the effects of the interactions existing between the vehicle and the terrain. In this paper we show how physical models and dynamic simulation tools can be used for amending and completing a nominal motion plan provided by a classical geometrical path planner. The purpose of our physical modeller‐simulator is to anticipate the dynamic behaviour of the vehicle while executing the nominal motion plan. Then the obtained simulation results can be used to assess and optimize the nominal motion plan. In the first part, we outline the physical models that have been used for modelling the different types of vehicle, of terrain and of vehicle‐surface interactions. Then we formulate the motion planning problem through the definition of two basic abstract constructions derived from physical model: the concept of generalized obstacle and the concept of physical target. We show with various examples how it is possible, when using this method, to solve the locomotion problem and the obstacle avoidance problem simultaneously and, furthermore, to provide the human operator with a true force feedback gestural control over the simulated robot.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.