Abstract
Constitutive equations for the flow behavior of a 0.13 pct C-1.52 pct Mn-0.28 pct Si-0.05 pct Nb-0.052 pct Ti microalloyed steel are determined. For this purpose, uniaxial hot compression tests were performed over a wide range of strain rates (0.01 to 80 s−1) and temperatures (750 to 1050 °C). From microstructural observations, the physical processes that occurred during deformation are discussed and related to the stress-strain responses. Using sinh type constitutive equation, the average apparent activation energy for hot deformation is obtained as 359 kJ/mol. The processing map obtained using the power dissipation efficiency, η, correlates well with microstructural changes observed. In the temperature range of 825-1050 °C and strain rate range of 0.01-0.1 s−1, the strain rate sensitivity map and the power dissipation map exhibit a peak domain wherein dynamic recrystallization is the primary restoration mechanism. Safe domains of strain, strain rate, and temperature for hot working of this steel have been identified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.