Abstract
Underground salt caverns are used globally for large-scale energy storage. In the thinly bedded rock salt in China, two butted-well horizontal (TWH) caverns, as alternatives for energy storage, are regarded as having better suitability and economy than vertical caverns. However, understandings of the cavern shape development and control methods of TWH-caverns remain insufficient. To overcome these shortcomings with respect to TWH-caverns, we conducted physical simulations of TWH-cavern construction using a high strength steel mold and molded large rock salt specimens. We established a platform for physical simulation of TWH-cavern water-solution construction using the large molded rock salt specimens, so that the construction process is visible and easily observed. Six groups of physical simulations of TWH-cavern construction were designed and implemented. The variables which affect the cavern outline expansion were investigated and compared, including water injection rate, transferring of injection well, oil blanket, and retreating position of the water outlet. Finally the expansion rules of the cavern outline, and different effects when injecting from an inclined well vs. From a vertical well were explored, as well as an attempt of retreating water outlet. This study provides significant guidance for constructing horizontal caverns for energy storage in thinly bedded rock salt.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.